We combine machine learning tree-based algorithms with the usage of low and high prices and suggest a new approach to forecasting currency covariances. We apply three algorithms: Random Forest Regression, Gradient Boosting Regression Trees and Extreme Gradient Boosting with a tree learner. We conduct an empirical evaluation of this procedure on the three most heavily traded currency pairs in the Forex market: EUR/USD, USD/JPY and GBP/USD. The forecasts of covariances formulated on the three applied algorithms are predominantly more accurate than the Dynamic Conditional Correlation model based on closing prices. The results of the analyses indicate that the GBRT algorithm is the bestperforming method.
machine learning, tree-based ensembles, volatility models, high-low range, covariance forecasting
C22, C45, C53, C58, C63, G17
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2019, December 26). Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. https://arxiv.org/pdf/1910.10045.pdf.
Bauwens, L., Hafner, C., & Laurent, S. (Eds.). (2012). Handbook of Volatility Models and Their Applications. John Wiley & Sons. https://doi.org/10.1002/9781118272039.
Bejger, S., & Elster, S. (2020). Artificial Intelligence in economic decision making: how to assure a trust?. Ekonomia i Prawo / Economics and Law, 19(3), 411–434. https://doi.org/10.12775 /EiP.2020.028.
Biau, G., & Scornet, E. (2016). A random forest guided tour. TEST, 25(2), 197–227. https://doi.org /10.1007/s11749-016-0481-7.
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023 /A:1010933404324.
Breiman, L. (2004). Bagging predictors. Machine Learning, 24, 123–140. https://doi.org/10.1007 /BF00058655.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees (1st edition). Chapman & Hall/CRC. https://doi.org/10.1201/9781315139470.
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco.
Chou, R. Y. (2005). Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model. Journal of Money, Credit and Banking, 37(3), 561–582. https://doi.org/10.1353/mcb.2005.0027.
Chou, R. Y., Wu, C. C., & Liu, N. (2009). Forecasting time-varying covariance with a range-based dynamic conditional correlation model. Review of Quantitative Finance and Accounting, 33(4), 327–345. https://doi.org/10.1007/s11156-009-0113-3.
Diebold, F. X., & Mariano, R. S. (1995). Comparing Predictive Accuracy. Journal of Business & Economic Statistics, 13(3), 253–263. https://doi.org/10.2307/1392185.
Engle, R. F. (2002). Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of Business and Economic Statistics, 20(3), 339–350. https://doi.org/10.1198/073500102288618487.
Fischer, T. G., Krauss, C., & Deinert, A. (2019). Statistical Arbitrage in Cryptocurrency Markets. Journal of Risk and Financial Management, 12(1), 1–15. https://doi.org/10.3390/jrfm12010031.
Fiszeder, P. (2018). Low and high prices can improve covariance forecasts: The evidence based on currency rates. Journal of Forecasting, 37(6), 641–649. https://doi.org/10.1002/for.2525.
Fiszeder, P., & Fałdziński, M. (2019). Improving forecasts with the co-range dynamic conditional correlation model. Journal of Economic Dynamics and Control, 108, 1–16. https://doi.org /10.1016/j.jedc.2019.103736.
Fiszeder, P., Fałdziński, M., & Molnár, P. (2019). Range-based DCC models for covariance and value-at-risk forecasting. Journal of Empirical Finance, 54, 58–76. https://doi.org/10.1016 /j.jempfin.2019.08.004.
Fiszeder, P., & Orzeszko, W. (2021). Covariance matrix forecasting using support vector regression. Applied Intelligence, 51(10), 7029–7042. https://doi.org/10.1007/s10489-021-02217-5.
Fiszeder, P., & Perczak, G. (2016). Low and high prices can improve volatility forecasts during periods of turmoil. International Journal of Forecasting, 32(2), 398–410. https://doi.org/10.1016 /j.ijforecast.2015.07.003.
Freund, Y. (1995). Boosting a Weak Learning Algorithm by Majority. Information and Computation, 121(2), 256–285. https://doi.org/10.1006/inco.1995.1136.
Freund, Y., & Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55(1), 119–139. https://doi.org/10.1006/jcss.1997.1504.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451.
Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28(2), 337–407. https://doi.org/10.1214/aos/1016218223.
Ghosh, P., Neufeld, A., & Sahoo, J. K. (in press). Forecasting directional movements of stock prices for intraday trading using LSTM and random forests. Finance Research Letters. https://doi.org/10.1016/j.frl.2021.102280.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inteference, and Prediction (2nd edition). Springer. https://doi.org/10.1007/978-0-387-84858-7.
Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2019). Literature review: Machine learning techniques applied to financial market prediction. Expert Systems with Applications, 124, 226– 251. https://doi.org/10.1016/j.eswa.2019.01.012.
Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844. https://doi.org /10.1109/34.709601.
Islam, S. F. N., Sholahuddin, A., & Abdullah, A. S. (2021). Extreme gradient boosting (XGBoost) method in making forecasting application and analysis of USD exchange rates against rupiah. Journal of Physics: Conference Series, 1722, 1–11. https://doi.org/10.1088/1742-6596/1722/1 /012016.
Khaidem, L., Saha, S., & Dey, S. R. (2016, April 29). Predicting the direction of stock market prices using random forest. https://arxiv.org/pdf/1605.00003.pdf.
Krauss, Ch., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689–702. https://doi.org/10.1016/j.ejor.2016.10.031.
Kumar, M., & Thenmozhi, M. (2006). Forecasting stock index movement: A comparison of support vector machines and random forest. 9th Capital Markets Conference, Vashi.
Lin, E. M. H., Chen, C. W. S., & Gerlach, R. (2012). Forecasting volatility with asymmetric smooth transition dynamic range models. International Journal of Forecasting, 28(2), 384–399. https://doi.org/10.1016/j.ijforecast.2011.09.002.
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020, October 6). The M5 Accuracy competition: Results, findings and conclusions. https://www.researchgate.net/publication /344487258_The_M5_Accuracy_competition_Results_findings_and_conclusions.
Molnár, P. (2016). High-low range in GARCH models of stock return volatility. Applied Economics, 48(51), 4977–4991. https://doi.org/10.1080/00036846.2016.1170929.
Nelson, D. B., & Cao, C. Q. (1992). Inequality Constraints in the Univariate GARCH Model. Journal of Business & Economic Statistics, 10(2), 229–235. https://doi.org/10.2307/1391681.
Parkinson, M. (1980). The Extreme Value Method for Estimating the Variance of the Rate of Return. The Journal of Business, 53(1), 61–65. https://doi.org/10.1086/296071.
Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Taieb, S. B., Bergmeir, C., Bessa, R. J., Bijak, J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Oliveira, F. L. C., Baets, S. D., Dokumentov, A., Ellison, J., Fiszeder, P., Franses, P. H., Frazier, D. T., Gilliland, M., Gönül, M. S., Goodwin, P., Grossi, L., Grushka-Cockayne, Y., Guidolin, M., Guidolin, M., Gunter, U., Guo, X., Guseo, R., Harvey, N., Hendry, D. F., Hollyman, R., Januschowski, T., Jeon, J., Jose, V. R. R., Kang, Y., Koehler, A. B., Kolassa, S., Kourentzes, N., Leva, S., Li, F., Litsiou, K., Makridakis, S., Martin, G. M., Martinez, A. B., Meeran, S., Modis, T., Nikolopoulos, K., Önkal, D., Paccagnini, A., Panagiotelis, A., Panapakidis, I., Pavía, J. M., Pedio, M., Pedregal, D. J., Pinson, P., Ramos, P., Rapach, D. E., Reade, J. J., Rostami-Tabar, B., Rubaszek, M., Sermpinis, G., Shang, H. L., Spiliotis, E., Syntetos, A. A., Talagala, P. D., Talagala, T. S., Tashman, L., Thomakos, D., Thorarinsdottir, T., Todini, E., Arenas, J. R. T., Wang, X., Winkler, R. L., Yusupova, A., & Ziel, F. (in press). Forecasting: Theory and Practice. International Journal of Forecasting.
de Prado, M. L. (2018). Advances in Financial Machine Learning. John Wiley & Sons.
Quinlan, J. R. (1992). C4.5 Programs for Machine Learning. Morgan Kaufmann.
Ryll, L., & Seidens, S. (2019, July 6). Evaluating the Performance of Machine Learning Algorithms in Financial Market Forecasting: A Comprehensive Survey. https://arxiv.org/pdf/1906.07786.pdf.
Schapire, R. E. (1990). The Strength of Weak Learnability. Machine Learning, 5(2), 197–227. https://doi.org/10.1007/BF00116037.
Schapire, R. E. (1999). A Brief Introduction to Boosting. Sixteenth International Joint Conference on Artificial Intelligence, Stockholm.
Waldow, F., Schnaubelt, M., Krauss, C., & Fischer, T. G. (2021). Machine Learning in Futures Markets. Journal of Risk and Financial Management, 14(3), 1–144. https://doi.org/10.3390 /jrfm14030119.
Yang, Y. (2021). Market Forecast using XGboost and Hyperparameters Optimized by TPE. 2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID), Guangzhou.
Yang, Y., Wu, Y., Wang, P., & Jiali, X. (2021). Stock Price Prediction Based on XGBoost and LightGBM. 2021 International Conference on Economic Innovation and Low-carbon Development, Qingdao.
Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 59–175. https://doi.org/10.1016/S0925-2312(01)00702-0.